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The topic of this paper is a generalization of the Conley-Zehnder index for periodic 
trajectories of a classical Hamiltonian system (Q, w, H) from cotangent bundles Q = 
T’W to arbitrary symplectic manifolds. It is precisely this index that occurs as a “Maslov 
phase” in the trace formulas by Gutzwiller and Duistermaat-Guillemin. In the course 
of constructing the index, a survey and several new formulas for Maslov’s theory of the 
Lagrangian Grassmannian are presented. 
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Introduction 

Consider a classical mechanical system (Q, o, H), where Q is a symplectic 
manifold, o its symplectic two-form and N E C” (Q, [w) a Hamiltonian. Assume 
that y : [w -+ Q is a periodic solution curve of period T and energy E for 
the Hamiltonian vector field XH on Q. The closed orbit is called regufur if 
the (linear) PoincarC map P(T) has no unit eigenvalue. From the implicit 
function theorem it follows that regular periodic orbits always come in one- 
parameter families. Their “orbit cylinder” is a symplectic submanifold of Q 
which is transversal to all energy surfaces H-’ (E). We refer to ref. [ 1 ] for 
a detailed proof, which also shows that orbit cylinders are stable under small 
perturbations of the Hamiltonian. 

Conley and Zehnder [ 31 have defined an index indcz (y ) for regular periodic 
orbits in T’W, generalizing the usual Morse index for closed geodesics on a 
Riemannian manifold. Roughly speaking, the index measures how often neigh- 
bouring trajectories of the same energy wind round the orbit. It is stable under 
deformations of the orbit as long as the regularity assumption is not violated. In 
particular, all members of the orbit cylinder have the same index. 

As we will see below, the Conley-Zehnder index admits a natural extension to 
arbitrary symplectic manifolds. The construction will only depend on the choice 
of a homotopy class of Lagrangian subbundles L of TQ along the orbit. Such 
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a choice is often dictated by the particular system under study, and is natural, 
e.g., for cotangent bundles Q = T*X or if the orbit is contractible. The index 
ind (11, L) is characterized by the following two properties: 

- The index is stable under small perturbations of the system (as long as the 
orbit remains regular). 

- Whenever there is an invariant Lagrangian subbundle M of TQ along the 
orbit, ind( y, L) is the (Maslov) intersection number of M with L. 

Regular periodic trajectories of the bicharacteristic flow play an essential role 
in the so-called trace formulas by Duistermaat-Guillemin [8] and Gutzwiller 
[ lo] and various generalizations [ 2,121. Let us briefly recall the content of these 
formulas. The Duistermaat-Guillemin theorem deals with positive elliptic first 
order pseudo-differential operators h on compact manifolds X. It states that the 
trace of the corresponding unitary group (which is the Fourier transform of the 
spectral density) has singularities at the periods T of periodic trajectories for 
the principal symbol H E C” (T’X, R). Moreover, under certain “cleanness” 
assumptions on the flow, the residue at a nonzero period corresponding to the 
orbit y is given by the expression 

T” e-inT 
,lirn(f - T) Tr(e&‘) = 2 

27~ J]det(l- PY)] 
exp(-firr(T),), (1) 

where T,! is the fundamental period of the orbit, P,, its Poincare map, Q the mean 
value of the subprincipal symbol along y and CJ~ E 2 a suitable Maslov phase. 

The (nonrigorous) semiclassical trace formula due to Gutzwiller stands at the 
outset for the theoretical study of “quantum chaos”. According to this formula, 
the spectral density g(E) = C 6 (E - Ei (h) ) for Schrodinger operators with 
discrete spectrum and sufficiently chaotic classical counterpart is approximately 
(for h -+ 0) the sum of a non-oscillating “Thomas-Fermi contribution” and 
an oscillating part (yielding energy levels). The former corresponds to the rule 
that each quantum state occupies a volume (2rrh ) n in classical phase space. The 
latter is a sum over the periodic orbits of the system, the contribution of y being 

Tj 1 
gy(E) = % Jldet(l - Py)l 

e(i/fi)S(E) exp(-iina,), (2) 

where S(E) = $0 T.,V denotes the action integral. Rigorous versions of the 
Gutzwiller formula can be derived with the help of suitable smoothing and lo- 
calizing operators, see refs. [ 2,16,19]. 

One of the goals of this work is to elucidate the geometric meaning of the 
Maslov phase in these formulas. We shall prove that in both cases, og is nothing 
but the Conley-Zehnder index ind( y, V), V being the vertical polarization. For 
( 1) this is equivalent to a result by Duistermaat [ 71. It also incorporates a recent 
observation by Robbins [ 18 1, who has shown that for hyperbolic periodic orbits, 
a, simply counts how often the stable and unstable manifolds wind round y. 
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The paper is divided into four parts. The first section gives a survey of var- 
ious indices associated with the symplectic group Sp(E) and the Lagrangian 
Grassmannian /i (E). We shall start from Dazord’s [ 51 construction of the in- 
tersection number [7] for a pair of curves of Lagrangian subspaces, built on 
Kashiwara’s definition of the signature of a Lagrangian triplet. 

This approach does not require transversality at the endpoints, and may be 
used to simplify the construction [ 9,151 of Leray’s index in the nontransversal 
case. The second section is concerned with the index of a periodic orbit. The 
third section contains the proof of 0)’ = ind(y, I’). Finally, the appendix gives 
a formula for the signature which leads to a very simple proof of the crucial 
cocycle identity. 

It should be emphasized that this contribution is closely linked with the paper 
[7] by Duistermaat, which contains further information on the intersection 
theory of Lagrangian curves and an extensive discussion of its relation to Morse 
theory. 

1. The intersection number of Lagrangian subspaces 

Let (E, U) be a real symplectic vector space of dimension 2n and let /i (E) be 
its Lagrangian Grassmannian, i.e. the set of Lagrange subspaces of E. Consider 
the action of the symplectic group Sp (E) on the set /i (E ) 3 of ordered Lagrangian 
triplets (L, , Lz, L3 ). It is clear that the dimensions of the intersections are invari- 
ant under this action. Another independent invariant is the so-called signature 
qf a Lagrangiail triplet discovered by Hormander [ 131 and Kashiwara [ 151. 
Together, these invariants completely specify the relative position of three La- 
grangian subspaces up to symplectic transformations. For (L,, Lz, L3 ) E A (E )3, 
the signature s (L,, Ll, L3 ) E Z is defined by 

s(Ll,L2,L3) =%n(Q(L1,LZjL3)), 

where Q (L,, Ll, L3) is the quadratic form 

Q(Ll, L2, L3) : L1 CB L2 @ L3 -+ R, 

(3) 

(Sl,S2,S3) )--t 0(X1,X2) + W(Xz,S3) + W(X3,Sl). (4) 
It is immediate from the definition that the signature s : /i (E)3 + Z is invariant 
under symplectic transformations and antisymmetric under exchange of two of 
the L’s. Let us list some less trivial properties: 

Proposition 1. 
(1) Cocycle identity.. 

s(‘hL3,&) -s(L,,L3,&) +S(L,,&,&) -s(L,,L2,L3) = 0. 



4 E. Meinrenken / Trace.formulas and the Corhy-Zehnder index 

(2) Reduction lemma: For arbitrary subspaces K sf LI n Lz + Lz n L3 + L3 n L,, 
s(L,, L2,LJ) = s(Lf,LF L ) -> L 

where LF denotes the image of L, under the smplectic reduction (K + KW ) -, 
Ex := (K + KW)J(K n KW). 

(3) Thesignatureruns through all integers between -i dim EF and + i dim EF, 
where F = (L, n L2) + (Lz n L3) + (LJ n L,). Consequent!,), s(L,, Lz, Lj) + 
dim (L, n Lz) + dim ( Lz n L3 ) + dim (L, n L, ) + n is an even number. 

(4) The orbits qf the action of Sp (E) on A (E ) 3 are completely determined by 
dim(LinL?nL,), dim(L,nLz), dim(LznLj), dim(LjnL,) ands(L,,L2,L3): 
If these jive numbers coincide for two triplets, thev lie on the same orbit. 

(5) The signature is locally constant on the set qf all triplets with given dimen- 
sions qf intersections. 

The proofs of the first two properties can be found, e.g., in ref. [ 1.51. For the 
case Li n Lj = {0}, properties 3 and 4 are proven in ref. [ 111 and property 
5 becomes obvious. The general cases follow by repeated use of the reduction 
lemma. 

Consider now two continuous paths LI, Lz : [a, b] --) A (E), where a 5 b. 
Assume first that there is some A4 E /1 (E ) which is transversal to all Li (t ) . We 
claim that the expression 

[LI :&I := ~[sWl(a),L2(a),M) -s(L(b),L2(b),M)] (5) 

is independent of the choice of M. Indeed, the cocycle identity gives 

s(L(t),L2(t),M) -s(L,(t),L2(t),M’) 
= sW,(t),M,M’) -s(L,(t),M,M’), 

which according to proposition 1.5 is independent of t if M, M’ are transversal 
to all L (t ). Thus, replacing M by M’ changes both terms in (5) by the same 
amount. 

In the general case, we choose a sufficiently fine partition a = to < . . 5 tk = 
b and Lagrangian subspaces M, such that M, is transversal to all Li (t) with 
t,-1 I t 5 t,, i = 1,2, and define the intersection number [L, : Lz] by the 
following formula: 

[LI :L21 = ;k (s(L,(t,-,),Lz(t~-l),M,) -s(L,(t,,),Lz(t,,),M,,)). (6) 

Example 2. n = 1. Let {e, f } be a symplectic basis for E and consider the 
following family of symplectic transformations: 

A(t) = cos(at) sin(&) 
-sin(&) cos(cut) 
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0 5 t 5 T. For L := span(e), L’ := A(t)L = span(ecos(al) -fsin(at)) one 
finds 

cxT = xk 
&<crT<x(k+ 1) (k E Z). 

Example 3. Since the expressions s ( L1 , L2, n4) are locally constant in M as long 
as M II Li = {0}, the above definition also makes sense if one considers a sym- 
plectic vector bundle over [a, b] and replaces the Li by Lagrangian subbundles. 
For instance, let N be a Lagrangian submanifold of T’X and y : [a, b] -+ N a 
continuous path on N. The Muslov index p of y is the intersection number of 
the tangent space T,(,,N with the vertical polarization 5,~~): 

Proposition 4 (Properties of the intersection number). 
(1) Antisymmetry: [LI : L2] + [L2 : L1 ] = 0. 
(2)Znvariance: [A(L,) : A( = [L, : L2] for all continuous paths A : 

[a, bl + SP(E). 
(3)[L, :L2] + idim(Ll(a)nLZ(a)) + $dim(Ll(b)nL2(b))EZ.Znpar- 

titular, [ L1 : Lz ] is an integer if the intersections at the endpoints are transversal. 
(4) If L, : [a, b] + A(E) is a third path, 

[L, : L21 + [L2 : L31 + IL3 : L 1 

= ; (s(Ll(a),Lz(a),L3(a)) -s(Ll(b),L?(b),L)(b))). (7) 

(5) Consider thespaceofpaths L1 x L2 : [a, b] -+ A(E)2 withgiven dimensions 
of the intersections at the endpoints. [L, : L2] labels the connected components 
of this space. 

(6) IfK (t ) is a continuous curve of isotropic subspaces contained in L1 such that 
dim (K f~ L2 ) is constant, the reductions Lf of L, with respect to K are continuous, 
and 

[L, : L2] = [L;K : Lf]. 

Prooj Properties l-4 follow easily from the definition and proposition 1. Let us 
prove property 5. It is obvious that the intersection number is locally constant 
on the space in question. Conversely, suppose that [ LI : L2] = [L’, : L;] 
for two paths in this space. We must show that they lie in the same connected 
component. By continuously deforming Ll, x Li, we may assume that LI = L’, 
and that L2 and L; coincide at the endpoints. Similarly, we can achieve that L2 
is constant. According to property 4, [Lz : L;] = 0. This means that evaluating 
the Maslov class [ 111 of /i (E) on the closed path L; gives zero. But since 
the Maslov class generates H’ (/i (E) ), this proves that L; is homotopic to the 
constant path L2. For property 6, observe that one may take the M, in the 
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definition of the intersection number as continuous curves, and that it suffices 
to require dim (L; (t ) n M,, (t ) ) = const. on [t,,-, , t,, 1. We hence take M,, (t ) = 
K (t ) + KI (t ) for suitable isotropic K:, and apply the reduction lemma. 0 

Using the intersection number, one arrives at a straightforward construction 
of the so-called Leroy il1de.y [ 11,15 1. Let z : /i (E) + A (E) denote the universal 
covering of the Lagrange-Grassmann manifold. For 110, ~1~ E /i(E), choose any 
path 11 : [0, l] -+ /i(E) such that t/(O) = llo and t/(l) = ill, and let L(t) = 
n(u(t)). Define the Leray index M(LQ,,u,) E ii2 by 

m(l~o,u,) = [L(t) : L(l)] = [L(t) : L(O)]. 

Proposition 4 guarantees that this is independent of the chosen path and imme- 
diately leads to the following statements: 

Proposition 5 (Properties of Leray’s index). 
(I) FOS Li = 71 (u;), Leray’s fornzula holds: 

rn(u,,uz) + rn(ll~,u~) + In(UJ,IIl) = $(L,,L,,LJ). (8) 

(2) For arbitrary lifts lli (. ) of Lagrangial? curves L, (. ), 

[LI : Lz] = nl(ul (a),u?(a)) - m(ul (b),u2(b)). (9) 

(3) in (111, ~2) is locallv constarlt on theset ofall II,, 112 withfix-eddim(Lr nL2). 

Conversely, properties 1 and 3 imply [ 91 that this definition of Leray’s index is 
equivalent-to the constructions in refs. [ 11,15 1. 

Let r : Sp (E) -, Sp (E) denote the universal covering group of the symplectic 
group. Elements ‘4 of the covering group can be identified with homotopy classes 
of paths A (1) in Sp (E) connecting the identity to A = r (,<). Recall that the 
graph 

r, := { (Bs,s)ls E E} 
of a symplectic transformation B in E is a Lagrangian subspace of E x E-, which 
is E $ E with the symplectic form pry w - pr; w. We hence obtain an index 

- 
P: SPW) + $3 A-H [A : G(,,l, (10) 

where A is the graph of the identity, i.e. the diagonal in E x E-. (Equivalent 
indices are introduced in refs. [ 31 and [4] .) 

Proposit@ 6 (Properties of the index p). 
(1) ,u (A ) is locally constant on the set of all A’ with given dim (ker (A - I ) ). 
(2)~(2) + fdim(& nd) E Z. 
(3)/&?‘) = -p(A). 
(d)y(SkS-‘) = ,u(A) for aUS E Sp(E). 
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(.T)LerA(.) : [O, l] --+ Sp (E ) be any path representing.% and let L, M E A (E ) 
be arbitrary. Then 

/&-i) = [n4: ‘4(t)L] + $(A, L x M,rJ). (11) 
If ker (‘4 - I) is symplectic and if L is il-invariant, the second term on the rhs 
vanishes. 

(6) (See ref.. [3].) Two elements qfthe set qf all ‘4 with ker(A - I) = (0) are in 
the same connected component if and only if thev have the same index. 

Proqf The first two statements are immediate from proposition 4 since ker(A - 
I) 2 (cq:,nd). Property 3 follows from [d : rJ(,,-,] = [rd(,j : d]. Property4is 
a special case of property 1 since the lhs is invariant if one connects S to the unit 
element. Equation ( 1 1) follows from proposition 4.4 and [A4 : .4 (t) L] = [M x 
L : rA(() 1. Assume now that L is invariant under ‘-1 and that El : = ker(A - I) 
is symplectic. Since we may decompose E = El 8 Er, it is sufficient to study 
the cases El = E and El = (0). The lirst case is equivalent to cd = A and 
hence trivial. In the second case, one has rd fl d = (0). Observe that, due to 
proposition 4.4, [M : .4 (t )L] is independent of the choice of M. It is therefore 
sufticient to prove s (d, L x M, c.1) = 0 for M = L. 

Since K := (L x L) n A and $4 have trivial intersection, c: Z rq rl KU 
and rd n (L x L) both have dimension 17 = 3 dim(E) and must therefore be 
identical. This proves [.f; = (L x L)’ and thus 

s(T4 A Lx L) = s([f A” (Lx L)“) = 0. ,> ) > 3 
Finally, property 6 is equivalent to theorem 1 and lemma 1.7 in ref. [3] after 
one has identified p (,$) with the index for exponential paths constructed there, 
which is done by a glance at the following examples. Cl 

Example 7. We can use the above theorem to compute 11 (,i) in example 2. If 
CUT = rcli, .4 (T) = &Z, so the result from example 2 gives for arbitrarily chosen 

p(k) = [L: ‘4(t)L] = k. 
If 27ck < aT < 2n(k + 1 ), it follows that Jo = 2k + 1 because /r(A) is 
constant on this set. 

Example 8. Assume .4 (t) = exp (tS) for some S E sp(E) which has no purely 
imaginary eigenvalues. The stable subspace L c E for ,4 (t ) is Lagrangian, hence 
j&-I) = [L: ,4(I)L] = [L : L] = 0. 

Example 9. In a canonical basis for E, let 

/l(t) = ; ‘p ( ) 



8 E. Meinrenken / Trace formulas and rhc Cottley-Zehttder itrde.1 

for some symmetric P. Let L = span{ei} and M = span(J). Since L is invari- 
ant, the proposition gives 

j&-i) = $(A, L x M,T.fl,) 
= $(s(M x Al, L x M,Cd) + s(A,A x M,Cd) 

-s(A,M x M,L x M)) 

= is(M,L,A(M)) = isgn(T)sgn(P), 

where we have applied the reduction lemma with K = d n (L x L) and K = 
(0) x Al. 

Proposition 10. The equation w (ii,, A,) = s (A, cd:,, , c+,12 ) defines a cocycle on 
Sp(E), i.e.. 

wM142,A3) + .IU(A,,Az) = 211(.4,,Ap43) + W(A2,‘4~). 

Considered as a cocycle on $I ( E ), it cobourzds 2/1: 

/.4-i,A,) -pm -p(&) = fw(iiw42). (12) 

Proqf: Of course, it suffices to prove the second-assertion. Choosing a fixed 
preimage d of A, we have an identification of Sp(E) as a subset of /i(E x 
E- ). Equation ( 12) then follows from Leray’s formula and HI (k, kz, ki ) = 
rn(iiJ) = p(A2). cl 

2. The Conley-Zehnder index of periodic trajectories 

Let 1’ : IF! -+ Q be a periodic trajectory of period T for the classical mechanical 
system (Q, w, H). Denote its orbit 1’ (OX) by ~7’ and its fundamental period by Tfl, 
i.e., T = kTfl for some nonzero integer k. 

The flow F’ = exp(tXH) generates a family of canonical transformations in 
the symplectic vector bundle TQj,,l. Let Cc’ be the reduced bundle with respect 
to K = span ( XH ) I),‘. Let q = 1’ (0) be some reference point and 

P(t) : Ej * E&q, (13) 

be the induced flow. P(T) : Ed -+ Eb is called (linear) Poincare map, and the 
periodic trajectory is called nondegenerate if P ( T) - I is invertible. As already 
mentioned, nondegenerate periodic orbits are contained in two-dimensional 
symplectic “orbit cylinders”, hence E’ can be regarded as the symplectic or- 
thogonal to the tangent bundle E2 of the orbit cylinder. 

Assume that y is nondegenerate and that we are given some distinguished 
homotopy class of Lagrangian subbundles L of TQIYz. [This is equivalent to 
specifying a lift ofthe bundle n (TQI,$ ) of Lagrangian Grassmannians to a bundle 
/i ( TQIYI ) of their universal coverings. Indeed, the homotopy class of the closed 
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curve L : 1~s --) /i ( TQ)ly, is then uniquely determined by the requirement that 
its lifts to 2 (TQl,,# ) should be closed.] Consider for instance one of the following 
cases: 

( 1) Q is a cotangent bundle and L is the vertical polarization. [More generally, 
one can consider situations where one has a distinguished lift /i (TQ) -+ A (TQ). 
Since the structure group of A(TQ) is G = Sp(R2”)/{Z,-I} and x1(G) = 
Z, there is an obstruction /? E H2( Q, Z) to the existence of such a lift, and 
uniqueness is equivalent to Hi (Q, Z) = {O}.] 

(2) The orbit $ is contractible. 
As announced in the introduction, we want the index ind(y, L) to be stable 

under small perturbations of the Hamiltonian system. More precisely, we require 
(A 1) The index depends only on L and on P (. ), and is invariant under ho- 

motopies of P(.) which leave (P(T) - I) invertible. 
(A2) If TFT(A4) = M for some M E A(T,Q), ind(y, L) = [L(y(t)) : 

TF’M]. 
Up to homotopy, there is unique trivialization I’ + 1” x E’ mapping K to a 

constant bundle. Let us also choose any trivialization of I’, so that P (t ) becomes 
a curve in Sp(E’). 

Let A4 be any fixed Lagrangian subspace of T4Q, regarded as a Lagrangian 
subbundle of TQ,,, via the trivialization. It is obvious that 

ind(y,L) := [L())(f)) : M] + ,n(Pp)) (14) 

is independent of the choice of q, M and the trivialization of &“. We check that 
it is also independent of the trivialization of E l. Each change of trivialization 
corresponds to a continuous map S : )~fl + Sp(E’). Writing S, = S(r(t)), this 
replaces P(t) by Ps(r) = S,P(t)S;’ and maps M to M.(r) = (S, x ZE?)M. 
We find 

[L(y(t) : lv4s(r)] - [L(y(t)) : A41 = [A4s(t) : M] = [h&(t) : Ms(O)] 

= pm -p6ilL 

which according to proposition 6 is the same as jc (Ps?) ) - p (PF) ). 

Proposition 11. The inde,x ind(y, L) satisfies (ill), (‘42) and is uniquely deter- 
mined by this property. 

ProojI It is clear from the definition that (A 1) is fulfilled. To check (A2 ), assume 
that A4 c TqQ is TFr-invariant. Since [L(y (t) : TF’M] does not depend on 
the choice of the invariant M, we may replace A4 by M’ $ K, where M’ c E’ is 
the reduction of M with respect to K. Using the above trivialization, property 
(A2) thus follows from 
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[L())(f)) : TF’ll4] - [L())(f) : M] = [M: TF’M] 

= [n4’ : P(l)M’] = p(PF)). 

On the other hand, lemma 1.7. of ref. [ 31 shows that one can deform P (.) such 
that all eigenvalues of P(T) are real. In that case, it is possible to construct an 
invariant Lagrangian subspace A4 of T,Q: Pick an eigenvector for TFT, observe 
that its o-orthogonal complement is invariant as well, pick an eigenvector for 
the induced map on the reduced space and so on. The corresponding Lagrangian 
subbundle A4 (1’ (t ) ) = TF’ (M) of TQrl is thus invariant, which shows that the 
index is uniquely determined by (A2). 0 

We now give another explicit expression for the index, which does not require 
any trivialization. 

Proposition 12. For arbitrary Lagrajzgian subspaces M E A (T,Q), the following 
.fomula is valid. 

ind(jt, L) = [L(l)(t)) : TF’(M)] 

+ ~s(A,L, x M,rTF~) + isgn(i3T/aE). (15) 

Proql: Abbreviate ~T,u = c and write & = 4’ x c2, d = d’ x A’. From 
proposition 6.3, 

p(PF)) = [A’ : r,‘] = [A : r;] - [A=: r,=] 

= [n4: TF’h4] + is(A,M x M,fT) - ~s(A’,K x K,r+). (16) 

According to example 9, the third term is i sgn (d T/d E ). The other terms can 
be combined with [L (j’(t) : h4] using proposition 4.3 and 

s(A,M x M,r’) + s(L,,M, TFT(M)) = s(A,L, x M,~T) 

to yield the final result ( 15 ). Cl 

If the periodic orbit is of hyperbolic type, i.e., if the Poincare map has no 
eigenvalues on the unit circle, the stable and unstable manifolds are Lagrangian. 
In particular, (A2) shows that in this case the index behaves additively un- 
der multiple traversals: ind(ky, L) = k ind ( y, L). However, this conclusion is 
wrong in general. Even if the multiply traversed orbit is still nondegenerate, the 
behaviour of the index is determined by the difference 

l k-l 

,Wti)) -kW’??) = ~~&&fi’T’&‘(rT))r 
r=2 

which is usually nonzero, see for instance example 7. The large k behaviour of 
such expressions in terms of the conjugacy class of P(T) was studied in great 
detail by Cushman and Duistermaat [4]. 
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3. Proof of q = ind(y, Vx) 

The aim of this section is to prove: 

Theorem 13. The Maslov phase gY appearing in the trace formulas (l), (2) is 
equal to the index ind( y, Vx), where V” is the vertical polarization of T’X. In 
particular, oY is the winding number ofthestable manifold if the orbit is hyperbolic. 

Recall from ref. [ 8 ] that eq. ( 1) originates from an application of the principal 
symbol calculus for Fourier integrals. A similar framework, with Fourier integrals 
replaced by oscillatory integrals [ 6,16,19], can also be used to derive eq. (2). 
(The major difference is that the corresponding Lagrangian manifolds are usually 
not conical, but this does not lead to special complications.) The integrals to 
be composed are the Schwartz kernel 6 (x, y ) of the identity and the Schwartz 
kernel U(t,x,y) of the unitary group (“trU(t) = JJ U(t,x,y)d(x,y)“). As 
oscillatory and Fourier integrals, respectively, the former is associated to the 
conormal bundle of the diagonal 

r, = {(x,&x,-l)} c T*(X x X), 

the latter to the canonical relation belonging to the flow F’: 

r, = {(t,r;s,r;v,-rl)IF’(.v,rl) = (x,T), 7: = -H(x,t-)l. (17) 

Note that r~r is swept out from { (0,~)) x r~ by the flow of the extended Hamil- 
tonian 

%FI(t,T;x,5;Y,rl) = T + ff(s,C). 

If the composition is clean in the sense of ref. [ 8 1, section 5, tr ( U ) is an oscil- 
latory integral associated to 

= {t,r 13(x,() E T’X: F’(s,t) = (s,c),H(x,<) = -T}. (18) 

The spectral density g(E) is finally obtained by taking the Fourier transform of 
tr ( U ( t ) ). It is hence an oscillatory integral associated to the image of P under the 
canonical transformation (t, -E) H (E, t ). From the known principal symbols 
of 6 and U, the composition rule now yields the principal symbol of tr( U) and 
g(E) and thus eqs. (1) and (2). For us, it suffices to describe the Maslov part 
of this composition rule and how it gives rise to a,. 

We start by recalling Hiirmander’s construction of Maslovs principal bundle 
M over the Lagrangian Grassmannian /i (E) of a symplectic vector space E. Let 
L1 E /i (E) be fixed. According to proposition 1, the expressions 

:(sU+bW) -.hhhM)) = ;(W,J& -04,MzJd) (19) 
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are locally constant and integer-valued as long as Li n Afj = {0}, i,j = 1,2. 
Using them as transition functions, a section of iv over an open subset U c /i (E) 
can be regarded as a function 

lp:u x A(E) --z (20) 

such that 4 ( L2, A!) - 4s (L,, Lz, 41) is independent of nl and $( Lz, A4) is con- 
tinuous on the set defined by Ad n L; = (0). 

In order to avoid undue complications, we will enlarge the structure group to 
fZ (call that bundle M’ ), which amounts to replacing Z by :Z in (20). One 
special feature of M’ is that each point Ly E /i(E) determines the germ of 
a trivialization. Indeed, let U be some contractible neighbourhood of Lq, take 
$( Lt, M) = +S ( L,, Li, JJ) and use parallel transport on M’. This yields 

$u%hq) = ~wd2,~) + [LI : Lz(f)l, 
where Lz (t ) is any path in U leading from Li to Lz. 

(21) 

Maslov’s principal bundle over a Lagrangian submanifold N of T*X is defined 
in a similar way, letting LI be the vertical polarization and L2 the tangent bundle 
of N. Suppose now that Nz, Ni are Lagrangian submanifolds of T’ (X3 x XI ) and 
T’ (X2 x Xi ), respectively, equipped with sections $i of their Maslov bundles 
Mi.. Let S c T’ (X2 x XI ) be the conormal bundle of the diagonal. Then A$ o Ni 
is, by definition, the image of (T*X, x S x T*X, ) n ( N2 x Ni ) under the symplectic 
reduction p : T’ Xs x S x T’X, + T’ (X3 x Xi ), and it is an immersed Lagrangian 
manifold if the intersection is clean (cf. ref. [ 1 ] ) . The composed section ~$2 o 4, 
is defined by 

hoh(J+;) = (42 x ddW,p)-‘(&A) 
for W, E ,4(Tp(T*(Xx x Xi)) and arbitrary z E p-‘(p). 

We now return to the particular case under consideration. In the sequel, 
IJR = span(d/dE) and Ilx denote the vertical polarizations in T*R’ and T’X, 
respectively. By abuse of notation, all the other vertical polarizations that appear 
will simply be denoted by I’. The canonical trivialization of the Maslov bundle 
over r, is defined by 

Parallel transport along the solution curves K of ,U, induces a trivialization of 
the Maslov bundle over &: 

h(wh.u-)) = [K-(r) : Tx.(,)rLrl + ;W&, T~u-)r(i, M’,ccr,). 
Using proposition 4.6, one easily finds that the first term is equal to [ I’.Y : 
TF’ ( I’.’ ) 1. At noncaustic points, i.e., where I?, is transversal to the vertical po- 
larization, the second term is just the canonical trivialization described above. 
We have hence recovered the Maslov phase in the semiclassical van Vleck for- 
mula for the unitary group as the transition function to the canonical trivializa- 
tion. 
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Assume now that (T, -E) E P corresponds to a nondegenerate periodic tra- 
jectory, T #= 0. Using the above rule, we can compute the induced section $uo& 
of the Maslov bundle over P. The final step of taking the Fourier transforma- 
tion is another composition with an oscillatory integral, associated to the graph 
of the canonical transformation (t, -E ) H (E, t). On the symbol level, this 
just exchanges the vertical and the horizontal polarizations of T’R. Finally, the 
phase (TV appears as the transition function from the composed sections of the 
Maslov bundle to the canonical trivialization (2 1) at (E, T). Evaluating this on 
Z := span(a/at), we obtain 

0, = (duo&)(Z) = (4~ x h)(Z x 7-S) 
= [V’: TF=(V’)] + +(VR x V,Tl-, x TA,Z x TS). 

(For convenience of notation, the base points will be omitted from now on.) 
From the cocycle identity and the reduction lemma, one finds 

s(VRxV,TTcrxTA,ZxTS)-s(VRxV,Tl-c,xTA,VR~TS) 

= s(VR,Z, TP) = sgn(dT/dE). 

Similarly, 

s(VR x V,TZ-i, x TA,VR x TS) = s(VJ(TFT) x TA,TS) 
= s(VxTA,T(TFT)xTA,TS)-s(VJ’xTA,TS) 

+ s(V, V x TAJ(TFT) x TA) 
= s(V,r(TFT),TA)-s(V,TA,V) +s(V,V,r(TFT)) 

= s(VJ(TFr), TA), 

hence 

a, = [Vx: TF’(VX)] + ;s( V,I’(TFT), TA) + isgn(dT/dE). (22) 

Comparing this to proposition 12, the theorem follows. 

Appendix A. Maslov’s bundle in the complex case 

It is interesting to note that the expressions ( 19) may also be looked upon 
as “complex phase changes”. To explain this point of view, which is motivated 
by ref. [ 171, let Li, Mj be complex Lagrangian subspaces of EC = E @ @, 
Li n A4j = (0). The projection of LI onto Lz along Mj induces an isomorphism 
rc.. /i”L, -+ A”Lz. Define J . 

r(L,, L2,M,,M,) = 7110 n;’ E C’. (A.11 

T satisfies an obvious cocycle condition in the J4’s and may therefore be used to 
define, for LI fixed, a principal @*-bundle over 11 (EC ). We now restrict attention 
to the case Li positive semidetinite, IMj negative semidetinite. (A Lagrangian 



subspace L of Ec is called positive/negative semidefinite, if G (.\-, .lJ) = +o (2,~’ ) 
is positive/negative semidefinite on L.) Since the set of negative semidefinite 
Lagrange subspaces is simply connected, there is a unique continuous choice of 
arg r such that 

argr(Li, Lz,hf,M) = 0. 

This gives rise to a principal R-bundle over the set of positive semidefinite La- 
grangian subspaces. We claim that Maslov’s bundle may, in a sense, be regarded 
as the restriction of this bundle to il (E) + (i (EC): 

Proposition 14. [fLi, A4j are corllple..\-iJicatio,ls ofreal Lagraugesubspaces (which 
we corltintre (0 denote f!IJT Li, A4j), 

+(S(LI,L~,M,) -s(L,,L~,h42)) = -~argr(LI,LZ,n,,~~). (A.2) 

Proqf: Both sides are invariant under continuous changes of Li which leave them 
real and transversal to Mj. We may therefore suppose that L, n Lz = (0) and 
choose a symplectic basis (e,, . . . , e,,, fi , . . . , .f;,) such that L, is spanned by the 
e’s and Lz by the .f’s. Similarly, we may suppose that the n4j are spanned by 
vectors 5~ = ek f J;I, and it suffices to investigate the flip of one sign. For 
this, it is sufficient to consider the case II = 1. Let g(t) = e + eeiK’f and 
M(t) = span(g(t)). The projection ofe onto Lz along bL(t) is emisrf, thus 

argr(L1,L,,n4(0),M(t)) = ret. 

On the other hand, 

s(L*,L2,A4(0,, -s(L,,L?,M(l)) = -1 - (-1) = -2. 0 

We now choose a real symplectic basis for E such that L,, n/r, are transversal 
to span(ei,. . . , e,, ). In this basis, they are spanned by vectors .fi + Cj /ITjej and 
.fi + Cj B{, respectively, where .P, BP are symmetric. One finds 

T(L,,L~,A4,,M~) = 
det(A’ -B,) det(A’ -B’) 
det(,d2 -B,) det(Ji -B’)’ (A.3) 

This leads to several properties of r: 

r(L1,Lz,~4,,~z) = s(M,,hl2,L,,Lz), (A.4) 
-- 

r(t,&,n4,,n4~) = r(L,,L2,A4,,Mz), (A.5) 

r(L,M,,n4~,n43)r(L,Mz,n43,M,)r(L,n43,n4,,Mz) = (-l)? (A.6) 
whenever the transversality conditions are fulfilled. If L,, and MD are positive 
and negative semidefinite, respectively, we obtain from eqs. (Ad), (A.5): 

arg(Li, Lz,Mi,M2) = -arg(%i,7i72,L,,L2). (A.7) 
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Together with proposition 14 this gives a proof of the cocycle identity 1.1 for 
the case L,,f~Alp = (0). 

I am grateful to C. Viterbo for pointing out ref. [ 3 ] and to W. Bischoff for a 
careful reading of the manuscript. 
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