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The topic of this paper is a generalization of the Conley-Zehnder index for periodic
trajectories of a classical Hamiltonian system (Q,w, H) from cotangent bundles Q =
T*R" 10 arbitrary symplectic manifolds. It is precisely this index that occurs as a “Maslov
phase” in the trace formulas by Gutzwiller and Duistermaat-Guillemin. In the course
of constructing the index, a survey and several new formulas for Maslov’s theory of the
Lagrangian Grassmannian are presented.
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Introduction

Consider a classical mechanical system (Q, w, H), where Q is a symplectic
manifold, w its symplectic two-form and H € C*°(Q,R) a Hamiltonian. Assume
that y : R — Q@ is a periodic solution curve of period T and energy E for
the Hamiltonian vector field Xy on Q. The closed orbit is called regular if
the (linear) Poincaré map P(7T) has no unit eigenvalue. From the implicit
function theorem it follows that regular periodic orbits always come in one-
parameter families. Their “orbit cylinder” is a symplectic submanifold of Q
which is transversal to all energy surfaces H~!(E). We refer to ref. [1] for
a detailed proof, which also shows that orbit cylinders are stable under small
perturbations of the Hamiltonian.

Conley and Zehnder [3] have defined an index ind¢z () for regular periodic
orbits in T*R", generalizing the usual Morse index for closed geodesics on a
Riemannian manifold. Roughly speaking, the index measures how often neigh-
bouring trajectories of the same energy wind round the orbit. It is stable under
deformations of the orbit as long as the regularity assumption is not violated. In
particular, all members of the orbit cylinder have the same index.

As we will see below, the Conley-Zehnder index admits a natural extension to
arbitrary symplectic manifolds. The construction will only depend on the choice
of a homotopy class of Lagrangian subbundles L of 7Q along the orbit. Such
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2 E. Meinrenken / Trace formulas and the Conley-Zehnder index

a choice is often dictated by the particular system under study, and is natural,
e.g., for cotangent bundles Q = T*X or if the orbit is contractible. The index
ind(y, L) is characterized by the following two properties:

— The index is stable under small perturbations of the system (as long as the
orbit remains regular).

-~ Whenever there is an invariant Lagrangian subbundle M of 7Q along the
orbit, ind(y, L) is the (Maslov) intersection number of A with L.

Regular periodic trajectories of the bicharacteristic flow play an essential role
in the so-called trace formulas by Duistermaat-Guillemin [8] and Gutzwiller
[10] and various generalizations [2,12]. Let us briefly recall the content of these
formulas. The Duistermaat-Guillemin theorem deals with positive elliptic first
order pseudo-differential operators H on compact manifolds X. It states that the
trace of the corresponding unitary group (which is the Fourier transform of the
spectral density) has singularities at the periods T of periodic trajectories for
the principal symbol H € C*(T*X,R). Moreover, under certain “cleanness”
assumptions on the flow, the residue at a nonzero period corresponding to the
orbit y is given by the expression

]‘)? e—iaT
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where T,',’ is the fundamental period of the orbit, P, its Poincaré map, o the mean
value of the subprincipal symbol along y and g, € Z a suitable Maslov phase.
The (nonrigorous) semiclassical trace formula due to Gutzwiller stands at the
outset for the theoretical study of “quantum chaos”. According to this formula,
the spectral density g(E) = Y. d(F ~ E;{h)) for Schrodinger operators with
discrete spectrum and sufficiently chaotic classical counterpart is approximately
(for 7 — 0) the sum of a non-oscillating “Thomas-Fermi contribution” and
an oscillating part (yielding energy levels). The former corresponds to the rule
that each quantum state occupies a volume (27/)" in classical phase space. The
latter is a sum over the periodic orbits of the system, the contribution of y being

T} 1
(E)=L——
& (E) 27 \/Tdet(I — P,)]

where S(E) = §6r-y denotes the action integral. Rigorous versions of the
Gutzwiller formula can be derived with the help of suitable smoothing and lo-
calizing operators, see refs. [2,16,19].

One of the goals of this work is to elucidate the geometric meaning of the
Maslov phase in these formulas. We shall prove that in both cases, g, is nothing
but the Conley-Zehnder index ind(y, V'), V' being the vertical polarization. For
(1) this is equivalent to a result by Duistermaat [7]. It also incorporates a recent
observation by Robbins [ 18], who has shown that for hyperbolic periodic orbits,
g, simply counts how often the stable and unstable manifolds wind round y.

lim (1 T) Tr(e ") = exp(—Lina,), (1)

el/MSE) exp(-1Ling,), (2)
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The paper is divided into four parts. The first section gives a survey of var-
ious indices associated with the symplectic group Sp(E) and the Lagrangian
Grassmannian A (E). We shall start from Dazord’s [5] construction of the in-
tersection number [7] for a pair of curves of Lagrangian subspaces, built on
Kashiwara’s definition of the signature of a Lagrangian triplet.

This approach does not require transversality at the endpoints, and may be
used to simplify the construction [9,15] of Leray’s index in the nontransversal
case. The second section is concerned with the index of a periodic orbit. The
third section contains the proof of o, = ind(y, V). Finally, the appendix gives
a formula for the signature which leads to a very simple proof of the crucial
cocycle identity.

It should be emphasized that this contribution is closely linked with the paper
[7] by Duistermaat, which contains further information on the intersection
theory of Lagrangian curves and an extensive discussion of its relation to Morse
theory.

1. The intersection number of Lagrangian subspaces

Let (E, w) be a real symplectic vector space of dimension 2» and let A(E) be
its Lagrangian Grassmannian, i.e. the set of Lagrange subspaces of E. Consider
the action of the symplectic group Sp(E) on the set 4 (E )3 of ordered Lagrangian
triplets (L, L,, L3). Itis clear that the dimensions of the intersections are invari-
ant under this action. Another independent invariant is the so-called signature
of a Lagrangian triplet discovered by Hormander [13] and Kashiwara [15].
Together, these invariants completely specify the relative position of three La-
grangian subspaces up to symplectic transformations. For (L,, L,, L3) € A(E)3,
the signature s(L;, L,, L3) € Z is defined by

$(Ly, Ly, Ly) = sgn (Q(Ly, Ly, L)), (3)
where Q (L, L,, L3) is the quadratic form
Q(L\, Ly, L3): L@ Lyd Ly =R,
(X1, X2,X3) = w(x],X2) + 0{(X2,X3) + w(x3,X). (4)

It is immediate from the definition that the signature s : 4(E)3 — Z is invariant
under symplectic transformations and antisymmetric under exchange of two of
the L’s. Let us list some less trivial properties:

Proposition 1.
(1) Cocycle identity:

S(Ly, L3, Ly) —s(Ly, L3, Lg) + s(Ly, Ly, Lg) —s(Ly, Ly, L3) = 0.
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(2) Reduction lemma: For arbitrary subspaces K of LiNLs + LyNLy+ LiNLy,
s(Li, Ly, L3) = s(Lf, LY, LY),

where LK denotes the image of L; under the symplectic reduction (K + K¢) —
EX:= (K + K®)/(KNKY).

(3) The signature runs through all integers between —1 dim EF and + § dim EX,
where F = (LN Ly) + (LN Ly) + (LsnL;). Consequently, s(L,Ls, L3} +
dim(L; N L) 4+ dim(L, N L3) + dim(L3NL,) + n is an even number.

(4) The orbits of the action of Sp(E) on A(E)? are completely determined by
dim(L,NLyNL;3), dim(LNLy),dim(LyNL3), dim(L3NL;)ands(Ly,L,, L3):
If these five numbers coincide for two triplets, they lie on the same orbit.

(5) The signature is locally constant on the set of all triplets with given dimen-
sions of intersections.

The proofs of the first two properties can be found, e.g., in ref. [15]. For the
case L; N L; = {0}, properties 3 and 4 are proven in ref. [11] and property
5 becomes obvious. The general cases follow by repeated use of the reduction
lemma.

Consider now two continuous paths L, L, : [a,b] — A(E), where a < b.
Assume first that there is some M € A(E) which is transversal to all L; (t). We
claim that the expression

[Li:Ly) := 3[s(Li(a),Ly(a), M) —s(L;(b),Ly(b), M)] (5)
is independent of the choice of Af. Indeed, the cocycle identity gives
S(Ly (1), Lo (1), M) —s(Ly (1), Ly (1), M")
= S(Lz(t)’Mle) _S(Ll(t)9MaM/)s
which according to proposition 1.5 is independent of ¢ if M, M’ are transversal
to all L(¢). Thus, replacing M by M’ changes both terms in (5) by the same
amount.
In the general case, we choose a sufficiently fine partitiona = 3 < --- <1, =
b and Lagrangian subspaces M, such that M, is transversal to all L;(7) with

t,1 <t <t,,1 = 1,2, and define the intersection number [L, : L,] by the
following formula:

1 k
[Li:Ly) = 5 3 (S(Litton), La(ty), My) = $(Li (), La(6), My) ). (6)

Example 2. n = 1. Let {e, f} be a symplectic basis for E and consider the
following family of symplectic transformations:

Al = ( cos{at) sin(at) ),

—sin(at) cos(at)
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0<t<T.ForL:=span(e), L' := A(t)L = span(e cos(at) — f sin(at)) one

finds
al = nk

-y k: i
[L:L7] = {%+k: nk<aT <nlk +1) (k €2).
Example 3. Since the expressions s{(L,, L,, M) are locally constant in M as long
as M N L; = {0}, the above definition also makes sense if one considers a sym-
plectic vector bundle over [a, b] and replaces the L; by Lagrangian subbundles.
For instance, let N be a Lagrangian submanifold of 7*X and y : [a,b] - N a
continuous path on N. The Maslov index u of y is the intersection number of
the tangent space 7, /N with the vertical polarization F}:

L= [V TyyN].

Proposition 4 (Properties of the intersection number).

(1) Antisymmetry: [Ly: L] + [Lo: L] = 0.

(2) Invariance: [A(L\) : A(L;)] = [Ly : L,] for all continuous paths A :
[a,b] — Sp(E).

(3) [Ly: Lz] + %dlm(Ll (a) an(a)) + %dlm(Ll(b) an(b)) € Z. In par-
ticular, [L, : Ly] is an integer if the intersections at the endpoints are transversal.

(4)If Ly : [a,b] — A(E) is a third path,

(Ly:Ly] + [Ly:Ls] + [Ly: L]
= %(S(Ll (a),Lz(a),Lz(d))—S(Lx(b),Lz(b),Lz(b)))- (7)

(5) Consider the space of paths Ly x L, : [a,b] — A(E)? with given dimensions
of the intersections at the endpoints. [L| : L,] labels the connected components
of this space.

(6) If K (t) is a continuous curve of isotropic subspaces contained in L, such that
dim(KnNL,) is constant, the reductions Lf of L; with respect to K are continuous,
and

[Ly:Ly) = [LF: L]

Proof. Properties 1-4 follow easily from the definition and proposition 1. Let us
prove property 5. It is obvious that the intersection number is locally constant
on the space in question. Conversely, suppose that [L, : L] = [L] : Lj]
for two paths in this space. We must show that they lie in the same connected
component. By continuously deforming L} x L), we may assume that L, = L]
and that L, and L), coincide at the endpoints. Similarly, we can achieve that L,
is constant. According to property 4, [L, : L;] = 0. This means that evaluating
the Maslov class [11] of A(E) on the closed path L) gives zero. But since
the Maslov class generates H!(A4(E)), this proves that L} is homotopic to the
constant path L,. For property 6, observe that one may take the M, in the
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definition of the intersection number as continuous curves, and that it suffices
to require dim (L;(¢) N M, (t)) = const. on [f._;,t, ]. We hence take M,, (1) =
K (t) 4+ K. (1) for suitable isotropic K/, and apply the reduction lemma. O

Using the intersection number, one arrives at a straightforward construction
of the so-called Leray index [11,15]. Let n : A(E) — A(E) denote the universal
covering of the Lagrange-Grassmann manifold. For ug, 1| € A(E), choose any
path u : [0,1] — A(E) such that 2(0) = ug and (1) = u;, and let L(¢) =
n(u(t)). Define the Leray index m (ug, u,) € %Z by

mug, ) = [L(t):L(1)] = [L(): L(O)].

Proposition 4 guarantees that this is independent of the chosen path and imme-
diately leads to the following statements:

Proposition 5 (Properties of Leray’s index).
(1) For L; = n{u;), Leray’s formula holds:

muy, uz) + mua,uz) + m(us,uy) = %S(L],LI,LJ). (8)
(2) For arbitrary lifts u;(-) of Lagrangian curves L;(-),
[Li: Ly} = m(u(a),uz(a)) — m(uy(b),ux(b)). (9)

(3) m(uy, us) is locally constant on the set of all u,, u> with fixed dim(L,NL,).

Conversely, properties 1 and 3 imply [9] that this definition of Leray’s index is
equivalent to the constructions in refs. [11,15].

Let 7: Sp(E) — Sp(E) denote the universal covering group of the symplectic
group. Elements 4 of the covering group can be identified with homotopy classes
of paths 4(¢) in Sp(E) connecting the identity to A = 7(4). Recall that the
graph

Ipg:= {(Bx,x)|x € E}
of a symplectic transformation B in E is a Lagrangian subspace of £ x E~, which
is E @ E with the symplectic form pr} w — pr; w. We hence obtain an index

1:Sp(E) =1z, A [4: T4y, (10)

where 4 is the graph of the identity, i.e. the diagonal in £ x £~. (Equivalent
indices are introduced in refs. [3] and [4].)

Proposition 6 (Properties of the index u).
(1) u(A) is locally constant on the set of all A with given dim (ker(4 —1)).
() u(A) + $dim(Iyn4d) e z.
(3 pu(A™") = —u(A).
(4) u(SAS~') = u(A) forall S € Sp(E).
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(5)Let A(-) : [0,1] — Sp(FE) beany path representing 4, and let L,M € A(E)
be arbitrary. Then

p(Ad) = [M:AWL] + 3s(4, L x M, Ty). (11)

If ker(4 — I) is symplectic and if L is A-invariant, the second term on the rhs
vanishes.

(6) (See ref. [3].) Two elements of the set of all A with ker(4—1) = {0} are in
the same connected component if and only if they have the same index.

Proof. The first two statements are immediate from proposition 4 since ker(A4 —
I) & (I';Nn4). Property 3 follows from [4 : ['y;)-1] = [I4¢) : 4]. Property 4 is
a special case of property 1 since the lhs is invariant if one connects S to the unit
element. Equation (11) follows from proposition 4.4 and [M : A(t)L] = [M x
L : Iy ]. Assume now that L is invariant under 4 and that £, := ker(4 — 1)
is symplectic. Since we may decompose E = E; @ EP, it is sufficient to study
the cases £y = E and E; = {0}. The first case is equivalent to [y = 4 and
hence trivial. In the second case, one has I’y N4 = {0}. Observe that, due to
proposition 4.4, [A : A(¢)L] is independent of the choice of M. It is therefore
sufficient to prove s(4,L x M, Iy) = O for M = L.

Since K := (L x L) N4 and Iy have trivial intersection, I'X = I';n K®
and Iy N (L x L) both have dimension n = %dim(E) and must therefore be
identical. This proves I'} = (L x L)X and thus

s(F,4,Lx L) =s(I'k 45 (L x L)*) = 0.

Finally, property 6 is equivalent to theorem | and lemma 1.7 in ref, [3] after

one has identified u(4) with the index for exponential paths constructed there,
which is done by a glance at the following examples. O

Example 7. We can use the above theorem to compute u(ﬁ) in example 2. If
aT = nk, 4(T) = +I, so the result from example 2 gives for arbitrarily chosen
L

u(d) = [L:A(t)L] = k.
If 2nk < T < 2n(k + 1), it follows that u(4) = 2k + 1 because u(A) is
constant on this set.

Example 8. Assume 4 (1) = exp(¢S) for some S € sp(E) which has no purely
ima~ginary eigenvalues. The stable subspace L C E for A (¢) is Lagrangian, hence
u(d)y=[L: A1) L) =[L: L] =0.

Example 9. In a canonical basis for E, let

w=(37)
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for some symmetric P. Let L = span{e;} and M = span{/f;}. Since L is invari-
ant, the proposition gives

u(d) = §s(4,Lx M.Ty)
= %(S(Mx M, Lx M) +s(4,MxMITy)
—5(4,M x M,L x M))
= is(M,L,A(M)) = §sgn(T)sgn(P),

where we have applied the reduction lemma with K = 4N (L x L) and K =
{0} x M.

Proposition 10. The equation w (A, A2) = s(4,14,,I4,4,) defines a cocycle on
Sp(E), i.e.

w(AyAy, A3) + w (A4, 47) = w4, A243) + w (A4, A3).
Considered as a cocycle on §f)(E ), it cobounds 2u:
p(d Ay) — p () — p(dy) = Jw (4, 42). (12)

Proof. Of course, it suffices to prove the second assertion. Choosing a fixed
preimage 4 of 4, we have an identification of Sp(E) as a subset of A(E x
E~). Equation (12) then follows from Leray’s formula and m (4, 4,,4,) =
m(dy, 4) = pu(4y). O

2. The Conley-Zehnder index of periodic trajectories

Let y : R — Q be a periodic trajectory of period T for the classical mechanical
system (Q, w, H). Denote its orbit y (R) by y! and its fundamental period by 7%,
i.e., T = kT for some nonzero integer k.

The flow F' = exp(tXy) generates a family of canonical transformations in
the symplectic vector bundle 7Q|,s. Let £ ! be the reduced bundle with respect
to K = span(Xg)|,s. Let ¢ = y(0) be some reference point and

P(1): &} = Ebvg (13)

be the induced flow. P(T') : E; — E, is called (linear) Poincaré map, and the
periodic trajectory is called nondegenerate if P(7) — I is invertible. As already
mentioned, nondegenerate periodic orbits are contained in two-dimensional
symplectic “orbit cylinders”, hence £! can be regarded as the symplectic or-
thogonal to the tangent bundle £2 of the orbit cylinder.

Assume that y is nondegenerate and that we are given some distinguished
homotopy class of Lagrangian subbundles L of TQ|,:. [This is equivalent to
specifying a lift of the bundle 4 (7T°Q)|,:) of Lagrangian Grassmannians to a bundle
/i(TQ],,,) of their universal coverings. Indeed, the homotopy class of the closed
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curve L : y* — A(TQ)|,y is then uniquely determined by the requirement that
its lifts to A (T'Q|,+ ) should be closed.] Consider for instance one of the following
cases:

(1) Qisacotangent bundle and L is the vertical polarization. [More generally,
one can consider situations where one has a distinguished lift 4(7TQ) — A(TQ).
Since the structure group of A(TQ) is G = Sp(R*")/{l,-I} and 7,;(G) =
Z, there is an obstruction 8 € H?(Q,Z) to the existence of such a lift, and
uniqueness is equivalent to H'(Q,Z) = {0}.]

(2) The orbit ! is contractible.

As announced in the introduction, we want the index ind(y, L) to be stable
under small perturbations of the Hamiltonian system. More precisely, we require

(A1) The index depends only on L and on P(-), and 1s invariant under ho-
motopies of P(-) which leave (P(T) — I) invertible.

(A2)If TFT(M) = M for some M € A(T,Q), ind(y, L) = [L(y(t)) :
TF'M].

Up to homotopy, there is unique trivialization £2 — y* x E? mapping K to a
constant bundle. Let us also choose any trivialization of £!, so that P () becomes
a curve in Sp(E!).

Let M be any fixed Lagrangian subspace of 7,0, regarded as a Lagrangian
subbundle of TQ, via the trivialization. It is obvious that

ind(y,L) := [L(y(t)) : M] + u(P(T)) (14)

is independent of the choice of ¢, M and the trivialization of £2. We check that
it is also independent of the trivialization of £!. Each change of trivialization
corresponds to a continuous map S : ¥ — Sp(E!). Writing §, = S(y(1)), this
replaces P(7) by Ps(1) = S,P(1)S;"' and maps M to Ms(t) = (S x Ig,) M.
We find

(L) Ms(D)] = [L(y(6)) : M] = [Ms(t): M] = [Ms(r) : Ms(0)]

1(St) — 1(So),

which according to proposition 6 is the same as u(Ps (7)) — u(P(T)).

Proposition 11. The index ind(y, L) satisfies (A1), (412) and is uniquely deter-
mined by this property.

Proof. Ttisclear from the definition that (A1) is fulfilled. To check (A2), assume
that M c T,Q is TFT-invariant. Since [L(y(¢) : TF'M] does not depend on
the choice of the invariant M, we may replace M by M! @ K, where M! C E! is
the reduction of M with respect to K. Using the above trivialization, property
(A2) thus follows from
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[L(y(t)): TF'M]— [L(y(t): M] = [M: TF'M]
= [M':P(OM"] = u(P(T)).

On the other hand, lemma 1.7. of ref. [3] shows that one can deform P (-) such
that all eigenvalues of P(T') are real. In that case, it is possible to construct an
invariant Lagrangian subspace M of T,Q: Pick an eigenvector for TF, observe
that its w-orthogonal complement is invariant as well, pick an eigenvector for
the induced map on the reduced space and so on. The corresponding Lagrangian
subbundle M (y (1)) = TF'(M) of TQ,: is thus invariant, which shows that the
index is uniquely determined by (A2). O

We now give another explicit expression for the index, which does not require
any trivialization.

Proposition 12. For arbitrary Lagrangian subspaces M € A(T,Q), the following
Sformula is valid:

ind(y,L) = [L(y(t)): TF'(M)]
+ 354, Ly x M, Irpr) + Lsgn (OT/OE). (15)

Proof. Abbreviate I7r = I; and write I; = I;' x I[2, 4 = 4' x 4%, From
proposition 6.3,

u(P(T)) = 4" '] = [4: 5] - [4*: T})
= [M:TF'M] + is(4, M x M, I7) - s(4%, K x K. T#). (16)

According to example 9, the third term is %sgn(c’) T/ E). The other terms can
be combined with [L(y(¢) : M] using proposition 4.3 and

(A, M x M, IT7) +s(Ly, M,TFT(M)) =s(4,Ly x M, IT)
to yield the final result (15). O

If the periodic orbit is of hyperbolic type, i.e., if the Poincaré map has no
eigenvalues on the unit circle, the stable and unstable manifolds are Lagrangian.
In particular, (A2) shows that in this case the index behaves additively un-
der multiple traversals: ind (ky, L) = kind(y, L). However, this conclusion is
wrong in general. Even if the multiply traversed orbit is still nondegenerate, the
behaviour of the index is determined by the difference

. . =
u(P(kT)) = kp(P(T)) = 53 s(d. oy Toimy)
r=2
which is usually nonzero, see for instance example 7. The large & behaviour of
such expressions in terms of the conjugacy class of P(T) was studied in great
detail by Cushman and Duistermaat [4].
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3. Proof of 6, = ind(y, V'¥)

The aim of this section is to prove:

Theorem 13. The Maslov phase o, appearing in the trace formulas (1), (2) is
equal to the index ind(y, VX), where VX is the vertical polarization of T*X. In
particular, oy is the winding number of the stable manifold if the orbit is hyperbolic.

Recall from ref. [8] that eq. (1) originates from an application of the principal
symbol calculus for Fourier integrals, A similar framework, with Fourier integrals
replaced by oscillatory integrals [6,16,19], can also be used to derive eq. (2).
(The major difference is that the corresponding Lagrangian manifolds are usually
not conical, but this does not lead to special complications.) The integrals to
be composed are the Schwartz kernel 6 (x,y) of the identity and the Schwartz
kernel U (¢, x,y) of the unitary group (“trU(¢) = [ [U(£,x,y)d(x,y)”). As
oscillatory and Fourier integrals, respectively, the former is associated to the
conormal bundle of the diagonal

I5 = {(x,&x, -8} C T* (X x X),
the latter to the canonical relation belonging to the flow F':
Iy = {(t,;x5,&6p,-nF'(v,n) = (x,§), 1 = —H(x,{)}. (17)

Note that I is swept out from { (0, 7)} x I by the flow of the extended Hamil-
tonian

H(LT,x,8y,m) =T+ H(x,¢).
If the composition is clean in the sense of ref. [8], section S, tr(U) is an oscil-
latory integral associated to
P:=1TIyol;
{t,7|3(x, &) e T*X : F'(x,&) = (x,&),H(x,&) = —1}.  (18)

The spectral density g (E) is finally obtained by taking the Fourier transform of
tr (U (¢)). It is hence an oscillatory integral associated to the image of P under the
canonical transformation (t,—E) — (E,t). From the known principal symbols
of d and U, the composition rule now yields the principal symbol of tr (U) and
g(E) and thus eqgs. (1) and (2). For us, it suffices to describe the Maslov part
of this composition rule and how it gives rise to a,.

We start by recalling Hormander’s construction of Maslov’s principal bundle
M over the Lagrangian Grassmannian /4 (E') of a symplectic vector space E. Let
Ly € A(E) be fixed. According to proposition 1, the expressions

3(5(Ly, Lo, My) = s(Ly, Ly, My)) = §(s(My, My, Ly) — s(My, My, Ly)) (19)
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are locally constant and integer-valued as long as L, n Af; = {0}, /,j = 1,2.
Using them as transition functions, a section of M over an open subsetd C A(E)
can be regarded as a function

p:UXAE)—Z (20)

such that ¢ (L,, M) — %S(LI,LZ, M) is independent of M and ¢ (L,, M) is con-
tinuous on the set defined by M n L; = {0}.

In order to avoid undue complications, we will enlarge the structure group to
%Z (call that bundle M’), which amounts to replacing Z by %Z in (20). One
special feature of M’ is that each point L‘zJ € A(E) determines the germ of
a trivialization. Indeed, let &{ be some contractible neighbourhood of Lg, take
¢(LY, M) = 1s(L;,L3, M) and use parallel transport on M. This yields

¢(La, M) = $s(Ly, Ly, M) + [L,: Ly(1)], (21)

where L, (t) 1s any path in U/ leading from Lg to L,.

Maslov’s principal bundle over a Lagrangian submanifold N of 7* X is defined
in a similar way, letting L, be the vertical polarization and L, the tangent bundle
of N. Suppose now that N,, N| are Lagrangian submanifolds of 7 ( X3 x X;) and
T* (X, x X)), respectively, equipped with sections ¢; of their Maslov bundles
M. Let S € T*(X; x X») be the conormal bundle of the diagonal. Then N>o N,
is, by definition, the image of (7 X3xS8x T* X, )N (N, x N{) under the symplectic
reduction p : T* X3 xSxT*X, — T*(X;3x X;),and it 1s an immersed Lagrangian
manifold if the intersection is clean (cf. ref. [1]). The composed section ¢ o ¢,
is defined by

paod (W) = (¢2 x ¢1) ((T=p)~' (W)
for W, € A(T,(T* (X3 x X)) and arbitrary z € p~! (p).

We now return to the particular case under consideration. In the sequel,
V'R = span(9/0E) and V* denote the vertical polarizations in T*R and T* X,
respectively. By abuse of notation, all the other vertical polarizations that appear
will simply be denoted by V. The canonical trivialization of the Maslov bundle
over Iz is defined by

¢s (W) = %S(V:, T:ES, w.).

Parallel transport along the solution curves k of X4 induces a trivialization of
the Maslov bundle over [;:

dv (W) = Wy TewIv] + 38 Very, TeeryIvs Ween)-

Using proposition 4.6, one easily finds that the first term is equal to [V'¥ :
TF'(VX)]. At noncaustic points, i.e., where I is transversal to the vertical po-
larization, the second term is just the canonical trivialization described above.
We have hence recovered the Maslov phase in the semiclassical van Vleck for-
mula for the unitary group as the transition function to the canonical trivializa-
tion.
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Assume now that (7, —FE) € P corresponds to a nondegenerate periodic tra-
jectory, T # 0. Using the above rule, we can compute the induced section ¢y ods
of the Maslov bundle over P. The final step of taking the Fourier transforma-
tion is another composition with an oscillatory integral, associated to the graph
of the canonical transformation (¢, —FE) — (E,t). On the symbol level, this
just exchanges the vertical and the horizontal polarizations of T*R. Finally, the
phase g, appears as the transition function from the composed sections of the
Maslov bundle to the canonical trivialization (21) at (E, T'). Evaluating this on
Z := span(0/dt), we obtain

oy = (puods)(Z) = (pu x ¢s)(Z x TS)
= VX TFT(V)) + Ls(VRx V,TIy x T4,Z x TS).
(For convenience of notation, the base points will be omitted from now on.)
From the cocycle identity and the reduction lemma, one finds

S(WRXV,TIy x T4, Z xTS) —s(VRxV,TIy x T4, VRx TS)
=s(VR, Z,TP) = sgn(8T/OE).
Similarly,

SRV, TIy x TA, VR TS) = s(V,[(TFT) x T4,TS)
S(VxTA,T(TFT)x T4, TS) —s(V,V x T4,TS)
+s(V,V x T4, (TFT) x T4)
s(V,[(TFT), T4) —s(V,T4,V) + s(V,V,[ (TFT))
= s(V,[(TFT),T4),

hence
oy = [VX:TF'(V*)] + {s(W,I'(TFT),T4) + 1sgn(@T/0E). (22)

Comparing this to proposition 12, the theorem follows.

Appendix A. Maslov’s bundle in the complex case

It is interesting to note that the expressions (19) may also be looked upon
as “complex phase changes”. To explain this point of view, which is motivated
by ref. [17], let L;, M; be complex Lagrangian subspaces of E¢c = E ® C,
L;NM; = {0}. The projection of L, onto L, along M induces an isomorphism
m;j:A"L) — A" L. Define

T(Ly, Ly, My, M>) = myon;' €C. (A.1)

7 satisfies an obvious cocycle condition in the Af’s and may therefore be used to
define, for L fixed, a principal C*-bundle over A4 (E¢ ). We now restrict attention
to the case L; positive semidefinite, M; negative semidefinite. (A Lagrangian
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subspace L of E¢ is called positive/negative semidefinite, if G(x,y) = %w(j', )
is positive/negative semidefinite on L.) Since the set of negative semidefinite
Lagrange subspaces is simply connected, there is a unique continuous choice of
arg T such that

arg T(L, Lo, M, M) = 0.
This gives rise to a principal R-bundle over the set of positive semidefinite La-
grangian subspaces. We claim that Maslov’s bundle may, in a sense, be regarded
as the restriction of this bundle to A(E) — A(E¢):

Proposition 14. IfL;, M; are complexifications of real Lagrange subspaces (which
we continue to denote by L;, M),

1(s(Ly. Ly, M) = s(Ly, Ly, M) = —%argr(Ll,Lz,M,,Mg). (A.2)

Proof. Bothsides are invariant under continuous changes of L; which leave them
real and transversal to M;. We may therefore suppose that L, N L, = {0} and
choose a symplectic basis (e),...,ep, f1,..., fy) such that L, is spanned by the
e’s and L, by the /’s. Similarly, we may suppose that the Af; are spanned by
vectors g, = e, x f;, and it suffices to investigate the flip of one sign. For
this, it is sufficient to consider the case n = 1. Let g(t) = e + e~ f and
M (t) = span(g(t)). The projection of e onto L, along A () is e~ f thus

arg T(Ly, L, M (0), M (1)) = nt.
On the other hand,
S(Li, L2, M(0)) —s(Ly, Ly, M (1)) = =1 - (-1) = -2. O
We now choose a real symplectic basis for £ such that L,, My are transversal

to span(ey,...,e,). In this basis, they are spanned by vectors f; + Zj Afej and
fi+ 2, B,’i respectively, where 4%, B# are symmetric. One finds

det(A' — B') det(4°> - B?)

Pk Lo My M) = G BN den (AT = BY)' (A.3)

This leads to several properties of 1:
T(Ly, Lo, M, M) = ©(M, My, Ly, L5), (A4)
1(Ly, Ly, M\, M3) = 1(Ly, Ly, M\, My), (A.5)

T(L, My, Ma, M3) T(L, My, My, M) T(L, M3, M|, My) = (=1)3", (A.6)

whenever the transversality conditions are fulfilled. If L, and My are positive
and negative semidefinite, respectively, we obtain from eqgs. (A.4), (A.5):

arg(LlsL?_sA{laMZ) = —arg(ﬁl,A’IZ,Z],Zz). (A7)
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Together with proposition 14 this gives a proof of the cocycle identity 1.1 for
the case L, N My = {0}.

I am grateful to C. Viterbo for pointing out ref. [3] and to W. Bischoff for a
careful reading of the manuscript.
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